Article ID Journal Published Year Pages File Type
1804975 Journal of Magnetism and Magnetic Materials 2007 9 Pages PDF
Abstract

Magnetization of the ZnFe2O4 sample of average size 4 nm measured with SQUID in the temperature range 5–300 K shows anomalous behaviour in field cooled (FC) and zero-field-cooled (ZFC) conditions. The FC and ZFC curves measured in 50 Oe field cross each other a little before the peaks. No such anomaly is observed with samples of 6 nm particle size made with the same procedure. The characteristics of the FC and ZFC curves are very different in ZnFe2O4 samples of the same size (6 nm) made via two different chemical routes. The genesis of these differences are suggested to be in cationic configuration and spin disorder. Fe-extended X-ray absorption fine structure (EXAFS) studies show that there is around 80% inversion in case of zinc ferrite (ZnFe2O4) with the particle size 4 nm, whereas ZnFe2O4 of size 6 nm shows 40% inversion. The samples with an average particle size of 7 nm and more show negligible inversion. Theoretical simulations suggest that the electrostatic energy of the system plays a crucial role in deciding the cationic configuration of spinel ferrites.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,