Article ID Journal Published Year Pages File Type
1805027 Journal of Magnetism and Magnetic Materials 2006 4 Pages PDF
Abstract

Josephson current is investigated in the superconductor/ferromagnet/superconductor junction. It was shown that the current exhibited damping oscillations as a function of the ferromagnetic layer thickness. Previous theories based on Usadel or Eilenberger equations have predicted that the damping length and oscillation period divided by 2π were the same for weak ferromagnetic spacer. This contradicts past experiments. A new calculation of the Josephson current is proposed. The Gorkov equations are solved taking into account s–d scattering in ferromagnet. It is shown that the oscillation period depends only on the exchange magnetic field in the spacer, whereas the damping length is connected to the ferromagnetic mean free path. The concordance with the former experiment allows one to conclude that s–d scattering as a pair-breaking mechanism plays a significant role in the proximity effect in S/F heterostructures.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,