Article ID Journal Published Year Pages File Type
1805056 Journal of Magnetism and Magnetic Materials 2006 7 Pages PDF
Abstract

Magnetic natural films composed of alginate and maghemite nanoparticles are studied. A surface treatment by citrate ions of the magnetic nanoparticles is first required to limit interactions with carboxylate functions of alginate and to stabilize them in neutral pH. Sodium alginate films, with or without nanoparticles, are immersed in a calcium chloride bath to convert them into mixed sodium/calcium alginate films. The ion exchange process is quantified by the degree of substitution (DS) deduced from sodium and calcium content obtained by atomic absorption spectroscopy. The magnetic nanoparticles content is also analysed to correlate the release of the particles to the amount of calcium present in the film. Nanoparticles do not significantly change the ion exchange process. Water insoluble films, which do not release magnetic nanoparticles, are obtained for a complete conversion of sodium alginate into calcium alginate (DS value is thus close to the stoechiometric ratio equal to 0.5). Such increase in water resistance of alginate films is caused by the formation of a dense network by crosslinking of the alginate polymer with Ca ions which prevents the alginate from going out of the film. Swelling properties of the mixed films are then investigated as a function of calcium concentration and nanoparticles content. It is found that the swelling ability in water of the films decreases by increasing the immersion time in CaCl2 bath, the swelling ratio is thus a measure of the extent of crosslinking

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,