Article ID Journal Published Year Pages File Type
1805272 Journal of Magnetism and Magnetic Materials 2006 6 Pages PDF
Abstract

We report on proximity effects of a Au buffer layer on the current-in-plane giant magnetoresistance effect (CIP-GMR) in high-quality, epitaxial Fe/Cr/Fe(001) trilayers. The lower Fe layer is grown in the shape of a wedge and allows simultaneous preparation of 24 GMR stripe-elements with different lower Fe thicknesses in the range from 13 to 14.5 ML. The layer-by-layer growth mode in combination with the small thickness variation gives rise to: (i) well-controlled roughness changes from stripe to stripe as confirmed by reflection high-energy electron diffraction (RHEED), and (ii) to a varying influence of the underlying Au buffer. The oscillatory roughness variation along the wedge yields an oscillatory GMR behavior as a function of Fe thickness and confirms the previous result that slightly increased interface roughness causes a higher GMR ratio. The proximity of the Au buffer to the GMR trilayer results in an increase of the GMR ratio with increasing Fe thickness. The latter effect is explained by spin-depolarization at the Fe/Au interface and in the bulk of the Au buffer.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,