Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1805286 | Journal of Magnetism and Magnetic Materials | 2006 | 7 Pages |
Nanosized Fe0.2Ni0.8 particles were prepared by reducing their salts with sodium borohydride (NaBH4) in cationic water-in-oil (w/o) microemulsions of water/cetyl-trimethyl-amonium bromide (CTAB) and n-butanol/isooctane at 25 °C. According to the TEM and X-ray diffraction analyses, the synthesized particles were around 4–12 nm in size. Due to their nanodimensions, the particles had a primitive cubic (pc) structure rather than the body-centered cubic (BCC) structure of the bulk material. An examination of the synthesis from the reverse micelle reveals that the morphology of the iron–nickel alloy nanoparticles depends mainly on the microemulsion's composition. The magnetization of the nanoparticles was much lower than that of the bulk material, reflecting the influence of the nanodimensions on the particles’ magnetizations.