Article ID Journal Published Year Pages File Type
1808373 Physica B: Condensed Matter 2016 7 Pages PDF
Abstract

We have employed linear combination of atomic orbitals (LCAO) method to compute the Mulliken’s population (MP), energy bands, density of states (DOS) and Compton profiles for hexagonal MoTeSe. The density functional theory (DFT) and hybridization of Hartree-Fock with DFT (B3LYP) have been used within the LCAO approximation. Performance of theoretical models has been tested by comparing the theoretical momentum densities with the experimental Compton profile of MoTeSe measured using 137Cs Compton spectrometer. It is seen that the B3LYP prescription gives a better agreement with the experimental data than other DFT based approximations. The energy bands and DOS depict an indirect band gap character in MoTeSe. In addition, a relative nature of bonding in MoTeSe and its isovalent MoTe2 is discussed in terms of equal-valence-electron-density (EVED) profiles. On the basis of EVED profiles it is seen that MoTeSe is more covalent than MoTe2.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,