Article ID Journal Published Year Pages File Type
1808433 Physica B: Condensed Matter 2016 6 Pages PDF
Abstract

Goos-Hänchen (GH) shifts of the reflected and transmitted probe beams through a cavity with a four-level quantum system and plasmonic nanostructure is investigated. It is realized that for different values of distance between plasmonic nanostructure and quantum system, the negative and positive GH shifts of the reflected and transmitted probe beams can be controlled. In addition, it is found that the relative phase of applied fields in the presence of plasmonic nanostructure can be used as an important parameter for controlling the GH shifts in reflected and transmitted light through the cavity. Moreover, the distance effect between four-level quantum system and plasmonic nanostructure has also been discussed on lateral shifts of reflected and transmitted light.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,