Article ID Journal Published Year Pages File Type
1808924 Physica B: Condensed Matter 2015 5 Pages PDF
Abstract
Compared to Hg-cuprate, the origin that the dz2 orbital suppresses the d-wave superconductive (SC) pairs in La-cuprate is studied based on an effective two-orbital t-J-U model by using the Kotliar-Ruckenstein (KR) slave-boson technique. By analyzing the orbital-dependent electron distribution, it is elaborated that the double occupancy of dx2−y2 orbital, caused by the dz2 orbital mixture, should be responsible for the suppression of the d-wave SC pairs in La-cuprate. When the Coulomb interaction U increases, the ground state hosting the large double occupancy of dx2−y2 orbital in La-cuprate is stabilized by the localization of the carriers due to the Coulomb-blocking instead of reducing the double occupancy by the way of lowering of Coulomb potential energy. Therefore, it could be concluded that the mechanism that the double occupancy destructs against d-wave SC pairs is robust even if the strong Coulomb interaction exists in the La-based compounds.
Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,