Article ID Journal Published Year Pages File Type
1809248 Physica B: Condensed Matter 2015 5 Pages PDF
Abstract

We study numerically the optical properties of the intersubband transitions in AlGaAs/GaAs triangular quantum well nanostructure. The Schrödinger equation is being solved numerically for this structure using homemade codes. Afterward the refractive index and the absorption coefficient are calculated for general triangular quantum well using the density matrix formalism. The density matrix equations are being solved numerically for calculation of linear susceptibility. The effect of quantum interference between spontaneous emission decays on the refractive index, absorption coefficient and group velocity is studied for purposed triangular quantum well nanostructure. The result shows the linear optical properties and group index can be controlled via quantum interference between spontaneous emission decays.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,