Article ID Journal Published Year Pages File Type
1809383 Physica B: Condensed Matter 2014 5 Pages PDF
Abstract

Well passivated single Si/SiO2 nanoparticles obey mono-exponential blinking statistics, whereas CdSe/ZnS quantum dots follow an apparent (truncated) power-law. Log-normal distributions are found to describe the interval length histograms at least as well as power-laws, while at the same time being more physically feasible and significantly easing the determination of the exponential cutoff in the ON-time distribution. The correlation of an ON- (OFF-)interval with its temporally displaced ON (OFF) neighbors, as well as that of intermixed intervals (ON with OFF and OFF with ON neighbors) has been studied. As expected from purely random processes, the correlation coefficients for events in silicon nanocrystals equal zero, whereas positive correlations between the pure and negative correlations between the mixed states in CdSe quantum dots hint at a switching process between two distinct blinking regimes that are slower than the blinking itself.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,