Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1809585 | Physica B: Condensed Matter | 2014 | 7 Pages |
Nano-structured CdS thin film was deposited onto a glass substrate by an electron beam evaporation technique at room temperature from a powder prepared by a hydrothermal method. The morphology and structural properties of the as-deposited film were characterized using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The AFM morphology study confirms that the CdS thin film has nano-sized grains and a dense morphology. The mean particle size that resulted from XRD analyses was 8.4 nm. Also, the XRD patterns show that CdS powder and thin film have hexagonal wurtzite type structure with a preferred c-axis orientation along (002) plane. The refractive index and the film thickness were obtained using the Swanepoel method from transmission spectrum. The optical band gap was calculated from the absorption spectrum, and was found to be 2.41 eV corresponding to direct optical transition. The dispersion of the refractive index was explained using a single oscillator model. The dielectric relaxation time and the optical conductivity were determined and studied with photon energy.