Article ID Journal Published Year Pages File Type
1809616 Physica B: Condensed Matter 2014 5 Pages PDF
Abstract

With a square lattice mercury and water system being as the model, the band structures of nesting and compound phononic crystals with two different lattice constants were investigated using the method of the supercell plane wave expansion. It was observed that large band gaps can be achieved in low frequency regions by adjusting one of the lattice constants. Meanwhile, effects similar to interstitial impurity defects can be achieved with the increase of lattice constant of the phononic crystal. The corresponding defect modes can be stimulated in band gaps. The larger the lattice constant, the stronger the localization effect of defect modes on the wave. In addition, the change of the filling fraction of impurity exerts great influence on the frequency and localization of defect modes. Furthermore, the change of the position of impurity has notable influence on the frequency of defect modes and their localization. However, the geometry structure and orientation of impurity have little effect on the frequency of defect modes and their localization in the band gap.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,