Article ID Journal Published Year Pages File Type
1810560 Physica B: Condensed Matter 2012 9 Pages PDF
Abstract

The effect of Cr3+ substitution in Mg–Zn ferrite, with a chemical formula Mg0.5Zn0.5CrxFe2−xO4 (x=0.0–1.0), synthesized by a sol–gel auto-combustion reaction is presented in this paper. The resultant powders were investigated by various techniques, including X-ray diffractometry (XRD), transmission electron microscopy (TEM), infrared spectroscopy (IR), vibrating sample magnetometry (VSM), and DC resistivity. The XRD pattern revealed that the cubic spinel structure is maintained for the all the compositions. The particle sizes measured from XRD and TEM are in good agreement with each other. The cation distribution suggests that Mg2+, Cr3+ and Fe3+ have strong preference towards octahedral B-site. The theoretical lattice constant and experimental lattice constant match each other very well. The IR analysis supports the presently accepted cation distribution. The saturation magnetization decreases linearly with increasing Cr3+ content. Curie temperatures are obtained by the Laoria and AC susceptibility techniques. The dc resistivity has been investigated as a function of temperature and composition.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , ,