Article ID Journal Published Year Pages File Type
1810567 Physica B: Condensed Matter 2012 8 Pages PDF
Abstract

Equilibrium geometric structures, stabilities, and electronic properties of SinCu2 (n=1–8) clusters and pure silicon Sin (n=3–10) clusters are investigated systematically by exchange-correlation density functional (B3LYP). The optimized geometries show that the most stable isomers have 3D structure for n=2, 4–8, and Cu-substituted Sin+2 clusters is dominating growth pattern for the SinCu2 clusters. The calculated averaged binding energies, fragmentation energies, second-order difference of energies, and the HOMO–LUMO gaps show that Si2Cu2 and Si5Cu2 clusters have enhanced relative stabilities and chemical stability than their neighboring clusters. Electronic properties of SinCu2 (n=1–8) clusters are studied by calculating the natural population analysis and electrostatic potential, where the results show that the two copper atoms always possess positive charge and positive potential surround them. In addition, the VIP, VEA and the chemical hardness (η) are also analyzed and compared.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,