Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1810830 | Physica B: Condensed Matter | 2012 | 10 Pages |
Abstract
The structural and optoelectronic properties of LixAxNbO3 (A=Na, K, Rb, Cs, Fr and x=0, 0.5) compounds have been investigated by the generalized gradient approximation within density functional theory. The calculated fundamental direct band gap of pure LiNbO3 is 3.32Â eV. It is found that the substitution of alkali elements drastically change the optoelectronic nature of the compound from direct to indirect bandgap semiconductor and the fundamental gap also decreases. The nature of the compound is ionic with strong bonds between alkali ions and O, while there are partial covalent bonds between Nb and O. The calculated static refractive index of pure LiNbO3 is 2.43 for the perpendicular plane to the c-axis, while 2.37 for the parallel plane to the c-axis. So these values are intensively dependent on the substitution of alkali metals. The calculated electron energy loss spectra are in good agreement with the experimental results. It also predicts some extra interesting peaks, which have not been observed in experiments.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
H.A. Rahnamaye Aliabad, Iftikhar Ahmad,