Article ID Journal Published Year Pages File Type
1811004 Physica B: Condensed Matter 2012 5 Pages PDF
Abstract
In this work, an armchair model of the (4,4) boron phosphide nanotubes (BPNTs) with a 1-nm length and consisting of 32 B and 32 P atoms is considered to study the influence of doping three atoms of aluminum in sites of boron (B3AlPNTs) and three atoms of nitrogen in sites of phosphors (BP3NNTs) on the electrostatic structure properties. The mouths of nanotubes are capped by hydrogen atoms in order to saturate the dangling bonds of the boundaries and to decrease the calculation time. The structures of BPNTs, B3AlPNTs and BP3NNTs are optimized by performing the level of density functional theory (DFT) using 6-31G⁎ basis set. The optimized structures are used for calculating the chemical shielding (CS) tensors and nuclear magnetic resonance parameters such as isotropic chemical shielding (CSI) and anisotropic chemical shielding (CSA). The results reveal that in both models of B3AlPNTs and BP3NNTs by doping N atoms the chemical shielding parameters of P and B atoms, which are directly connected to the Al and N atoms decreased and the other sites significantly changed.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,