Article ID Journal Published Year Pages File Type
1811491 Physica B: Condensed Matter 2011 5 Pages PDF
Abstract

First-principles linear combination of atomic orbitals method within the framework of density functional theory is applied to study structural and electronic properties of tetragonal and cubic phases of Cd3P2. The equilibrium lattice constants and bulk moduli deduced from Murnaghan equation of state for the two structures are in good agreement with the experiment. Enthalpy–pressure curves do not show possibility of pressure induced structural phase transitions between the two structures up to 80 GPa. Electronic band structures and Mulliken population analysis for the two structures are presented. It is found that tetragonal Cd3P2 has direct band gap 1.38 eV while cubic structure shows indirect band gap of 0.35 eV. The branch point energies for the tetragonal structure lie below the conduction band while for cubic structure it lies in the conduction band. Mulliken population analysis shows that occupancies in 5sp, 6sp and 5d states of Cd and 3sp and 4sp states of P are largely affected on bond formation.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,