Article ID Journal Published Year Pages File Type
1811625 Physica B: Condensed Matter 2011 7 Pages PDF
Abstract

The structure, electric and dielectric properties of In-substituted Mg–Cu–Mn ferrites having the general formula of Mg0.9Cu0.1Mn0.1InxFe1.9−xO4 with 0.0≤x≤0.4 have been studied. X-ray diffraction (XRD) patterns of the samples indicated the formation of single-phase cubic spinel structure up to 0.2 and mixed phase (cubic and tetragonal phase) for samples x≥0.3. The relation of conductivity with temperature revealed a semiconductor to semimetal behavior as In+3 concentration increases. Variation in the universal exponent s with temperature indicates the presence of two hopping conduction mechanisms: the correlated barrier hopping (CHB) at low In+3 content x≤0.1 and small-polaron (SP) hopping at In+3 content x≥0.2. The variation in dielectric permittivity (ε′, ε″) with temperature at different frequencies shows a normal behavior for the studied compounds, while the variation in dielectric loss tangent with frequency at different temperatures shows abnormal behavior with more than relaxation peak. The conduction mechanism used in the present study has been discussed in the light of electron exchange between Fe3+ and Fe2+ ions and hole hopping between Mn2+ and Mn3+ ions at the octahedral B-sites.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,