Article ID Journal Published Year Pages File Type
1811752 Physica B: Condensed Matter 2011 5 Pages PDF
Abstract
A variational approach is employed to obtain the ground and the first excited state binding energies of an electron bound to a hydrogenic impurity in a polar semiconductor quantum dot (QD) with symmetric parabolic confinement in both two and three-dimensions. We perform calculations for the entire range of the electron-phonon coupling constant and the Coulomb binding parameter and for arbitrary confinement length. It is found that the binding energy of ground and first excited state is larger in a two-dimension (2D) dot than in a three-dimension (3D) dot and this trend is more pronounced with the increase of the electron-phonon coupling constant for the same value of the Coulomb binding parameter and confinement length. Furthermore, the ground and the first excited state binding energy increases with increasing the Coulomb binding parameter in both 2D and 3D QDs for the same electron-phonon coupling constant.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,