Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1811911 | Physica B: Condensed Matter | 2011 | 6 Pages |
Structural parameters as well as elastic, electronic, bonding and optical properties of monoclinic ZrO2 were investigated using the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory (DFT). The calculated structural properties and independent elastic constants of monoclinic ZrO2 are in favorable agreement with previous work. We have derived the bulk and shear moduli, Young’s modulus and Poisson coefficients for monoclinic ZrO2 and estimated the Debye temperature of monoclinic ZrO2 from acoustic velocity. Electronic and bonding properties are studied from the calculation of band structure, densities of states and charge densities. Furthermore, in order to clarify the mechanism of optical transitions in monoclinic ZrO2, the dielectric functions are calculated and analyzed by means of the electronic structure, which shows significant optical anisotropy in the components of polarization directions (1 0 0), (0 1 0) and (0 0 1).