Article ID Journal Published Year Pages File Type
1811914 Physica B: Condensed Matter 2011 5 Pages PDF
Abstract
Temperature dependence of the properties of strong-coupling bipolaron in a quantum dot (QD) is studied based on the Lee-Low-Pines-Huybrechts variational method and quantum statistical theory. Results of the numerical calculation show that the vibration frequency as well as the absolute value of the induced potential and the effective potential all increase with increasing coupling strength and temperature, respectively, and they also increase with decreasing relative distance of electrons. The bipolarons are closer and more stable when the temperature is higher and coupling strength is larger. The influence of radius of QD and dielectric constant ratio on the effective potential is little.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,