Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1812061 | Physica B: Condensed Matter | 2011 | 7 Pages |
Nanoscale Cu1−xMnxO powder is prepared by using the combustion synthesis technique with two different fuels. The structural properties of the powder are determined using Rietveld refinement of X-ray diffraction data, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy, while its magnetic properties are analyzed by means of hysteresis loop and temperature dependence of magnetization. The results show that (1) the Cu1−xMnxO nanocrystal is of monoclinic CuO structure, with grain size of 10–30 nm varying with the type of fuel, the nitrate/fuel ratio (N/F), and the Mn concentration, the doping of Mn has a little influence on the lattice parameters; (2) when the Mn concentration is higher than 7%, a small amount of impurity phase of CuMn2O4 appears and annihilates the potential cation vacancies; (3) all of the samples with x≥5% exhibit low-temperature ferromagnetism with the Curie temperature of ∼90 K, which increases slightly by raising the Mn concentration; (4) the paramagnetic moment per Mn ion is around 2–4 bohr magneton above the Curie temperature, which decreases with increasing Mn concentration, implying that the nearest Mn ions are antiferromagnetically coupled and the ferromagnetic order could originate from the super-exchange of next nearest Mn ions along the [1 0 1̄] direction.