Article ID Journal Published Year Pages File Type
1813414 Physica B: Condensed Matter 2009 4 Pages PDF
Abstract

Deep-level transient spectroscopy (DLTS) measurements were used to characterize the electrical properties of MOCVD grown, europium- (Eu) and xenon- (Xe) implanted GaN films on sapphire substrates. Implantation energy was 80 keV with a fluence of 1×1014 cm−2 along a channeled crystallographic direction. Defect levels were observed at EC−0.19 eV for both Eu- and Xe-implantation which were predicted to be a rare-earth related donor level by theoretical calculations. Other defect levels are observed with energy levels located at 0.22, 0.68, 0.49, 0.60, 0.77 eV and 0.48, 0.64, 0.45, 0.72 eV below the conduction band for Eu and Xe implantation, respectively. Some of these levels have similar defect signatures and can be related to other implantation related defects introduced in erbium, praseodymium and helium implantations.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,