Article ID Journal Published Year Pages File Type
1813664 Physica B: Condensed Matter 2009 4 Pages PDF
Abstract
Going beyond a recently proposed microscopic model [D. Mastrogiuseppe, A. Dobry, arXiv:0810.3018v1] for the incommensurate transition in the spin-Peierls TiOX (X=Cl, Br) compounds, in the present work we start by studying the thermodynamics of the model with XY spins and adiabatic phonons. We find that the system enters an incommensurate phase by a first order transition at a low temperature Tc1. At a higher temperature Tc2 a continuous transition to a uniform phase is found. Furthermore, we study the magnetism in the incommensurate phase by density matrix renormalization group (DMRG) calculations on a one-dimensional Heisenberg model where the exchange is modulated by the incommensurate atomic position pattern. When the wave vector q of the modulation is near π, we find local magnetized zones (LMZ) in which spins abandon their singlets as a result of the domain walls induced by the modulated distortion. When q moves far away enough from π, the LMZ disappear and the system develops incommensurate magnetic correlations induced by the structure. We discuss the relevance of this result regarding previous and future experiments in TiOCl.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,