Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1813926 | Physica B: Condensed Matter | 2009 | 5 Pages |
Abstract
We perform molecular-dynamics calculations to investigate the structural transformation of a copper cluster containing 201 atoms in its melting process within the framework of the embedded-atom method (EAM). Concerning melting, the obtained results reveal that its structural changes are different from those of larger-size clusters containing several hundreds or more atoms and smaller-size clusters containing tens of atoms. The melting process of this Cu201 cluster involves three stages, firstly some atoms in inner regions of this cluster move into outer regions accompanying the structural transformation of the local atom packing, followed by the continuous interchange of atomic positions, and finally this cluster is wholly disordered. During the temperature increase, the structural changes of different regions determined by atom density profiles result in apparent increases in internal energy. By decomposing peaks of pair distribution functions (PDFs) according to the pair analysis (PA) technique, the local structural patterns are identified for the melting of this cluster.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Lin Zhang, Cai-Bei Zhang, Yang Qi,