Article ID Journal Published Year Pages File Type
1814572 Physica B: Condensed Matter 2008 6 Pages PDF
Abstract
Ribbon samples of Cu0.95Co0.05 were prepared by melt spinning method to perform systematic investigations on structure and transport properties as a function of annealing temperature. X-ray diffraction study shows that the ribbon is polycrystalline with a strong 〈2 0 0〉 texture along the surface normal of the as-quenched Cu0.95Co0.05 ribbon and the degree of texture is enhanced upon annealing. The compressive stress, which relaxes upon annealing, is observed in as-quenched ribbon. The resistivity, which is higher in as-quenched ribbon, decreases toward the bulk value of Cu upon annealing. The compressive stress and higher resistivity in as-quenched ribbon are attributed to the incorporation of Co atoms/particles in Cu matrix. The decrement of the stress and resistivity upon annealing is due to the precipitation of Co atoms from the Cu matrix, segregating as Co or Co-rich Cu grains as observed from the transmission electron microscopy measurements.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,