Article ID Journal Published Year Pages File Type
1815662 Physica B: Condensed Matter 2009 5 Pages PDF
Abstract

The pressure–volume–temperature (P–V–T) equation of state (EOS), isothermal bulk modulus, and thermal expansivity of CaF2 with cubic fluorite-type structure are investigated using the constant temperature and pressure shell model molecular dynamics (MD) method with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction. It was shown that MD simulation is very successful in accurately reproducing the measured volumes of the CaF2 over a wide range of pressures. The simulated P–V data matched X-ray diffraction experimental results up to 9.5 GPa at 300 K. In addition, volume thermal-expansion coefficient and isothermal bulk modulus were also calculated and compared with available experimental data and the latest theoretical results at ambient condition. At extended temperature and pressure ranges, The P–V EOS under different isotherms at selected temperatures, T–V EOS under different isobars at selected pressures, thermal expansivity, and isothermal bulk modulus were predicted up to 1500 K and 10 GPa. The detailed knowledge of thermodynamic behavior and EOS at extreme conditions are of fundamental importance to the understanding of the physical properties of CaF2.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,