Article ID Journal Published Year Pages File Type
1816015 Physica B: Condensed Matter 2007 6 Pages PDF
Abstract

We perform molecular dynamics (MD) simulation of diffusion in liquid GeO2 at the temperatures ranged from 3000 to 5000 K and densities ranged from 3.65 to 7.90 g/cm3. Simulations were done in a model containing 3000 particles with the new interatomic potentials for liquid and amorphous GeO2, which have weak Coulomb interaction and Morse-type short-range interaction. We found a liquid–liquid phase transition in simulated liquid GeO2 from a tetrahedral to an octahedral network structure upon compression. Moreover, such phase transition accompanied with an anomalous diffusion of particles in liquid GeO2 that the diffusion constant of both Ge and O particles strongly increases with increasing density (e.g. with increasing pressure) and it shows a maximum at the density around 4.95 g/cm3. The possible relation between anomalous diffusion of particles and structural phase transition in the system has been discussed.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,