Article ID Journal Published Year Pages File Type
1816661 Physica B: Condensed Matter 2006 4 Pages PDF
Abstract
Oxygen precipitation in Si strongly depends on the undergoing thermal treatment. Between 350 and 450 °C thermal donor formation is activated by a 1.4-1.6 eV barrier. On the other hand, at T>500∘C, SiO2 cluster formation is limited by the interstitial oxygen (Oi) migration barrier of ∼2.5eV. Volumetric arguments imply that the formation of silica precipitates during anneals of oxygen-rich Si crystals, must be accompanied by the ejection of approximately one Si self-interstitial (Sii) per SiO2 unit that is formed. We report on ab-initio density-functional studies of small oxygen aggregates in Si, to show that the On→VOn+Sii reaction is exothermic for n⩾4. The large energy barrier required to form an intermediate Sii defect prevents the formation of VOn complexes at temperatures as low as 450 °C. Our results imply that thermal donors are not thermodynamically stable clusters, and their formation is driven by kinetics. Infra-red absorption studies can discriminate VOn and On defects. We report their local vibrational modes and compare them with the available experimental data.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,