Article ID Journal Published Year Pages File Type
1817532 Physica C: Superconductivity and its Applications 2015 5 Pages PDF
Abstract
Phenomenally, Cooper pairs can be broken up by external energy and thus the Cooper-pair density in the superconducting electrodes of a Josephson junction (JJ) under radiation can be lowered accordingly. Therefore, by probing the shift of the switching current through the junction, the radiation power absorbed by the superconductors can be detected. Here, we experimentally demonstrate weak optical detections in two types of JJs: Al/AlOx/Al junction (Al-J) and Nb/AlOx/Nb junction (Nb-J), with the superconducting transition temperatures Tc≈1.2K and 6.8 K respectively. The photon-induced switching current shifts are measured at ultra-low temperature (T≈16mK) in order to significantly suppress thermal noises. It is observed that the Al-J has a higher sensitivity than the Nb-J, which is expected since Al has a smaller superconducting gap energy than Nb. The minimum detectable optical powers (at 1550 nm) with the present Al-J and Nb-J are measured as 8 pW and 2 nW respectively, and the noise equivalent power (NEP) are estimated to be 7×10-11W/Hz (for Nb-J) and 3×10-12W/Hz (for Al-J). We also find that the observed switching current responses are dominated by the photon-induced thermal effects. Several methods are proposed to further improve the device sensitivity, so that the JJ based devices can be applicable in photon detections.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , ,