Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1819122 | Physica C: Superconductivity and its Applications | 2009 | 14 Pages |
Abstract
A brief review of optical and Raman studies on the Fe-based superconductors is given, with special emphasis on the competing phenomenon in this system. Optical investigations on ReFeAsO (Re = rare-earth element) and AFe2As2 (A = alkaline-earth metal) families provide clear evidence for the gap formation in the broken symmetry states, including the partial gaps in the spin-density wave states of parent compounds, and the pairing gaps in the superconducting states for doped compounds. Especially, the superconducting gap has an s-wave pairing lineshape in hole-doped BaFe2As2. Optical phonons at zone center detected by Raman and infrared techniques are classified for several Fe-based compounds. Related issues, such as the electron-phonon coupling and the effect of spin-density wave and superconducting transitions on phonons, are also discussed. Meanwhile, open questions including the T-dependent mid-infrared peak at 0.6-0.7 eV, electronic correlation, and the similarities/differences between high-Tc cuprates and Fe-based superconductors are also briefly discussed. Important results from other experimental probes are compared with optical data to better understand the spin-density wave properties, the superconductivity, and the multi-band character in Fe-based compounds.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
W.Z. Hu, Q.M. Zhang, N.L. Wang,