| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 1820955 | Physica C: Superconductivity and its Applications | 2006 | 5 Pages | 
Abstract
												In atomic Fermi gases, the pairing character changes from BCS-like to BEC-like when decreasing the threshold energy of the Feshbach resonance. With this crossover, the system enters a strong-coupling regime through the population enhancement of diatom molecules, i.e., tightly bound Cooper pair, and the vortex structure shows much different features in contrast to the well-known core structure in BCS superfluid. In this paper, we study the structure of a single quantized vortex by numerically solving the generalized Bogoliubov-de Gennes equation derived from the boson-fermion model and clarify how the vortex structure changes with the crossover from BCS to BEC. As a result of numerical calculations, we find that the presence of the diatom molecular condensate enhances the matter density depletion inside the vortex core in the crossover regime and the Caroli-de Gennes-Matricon (CdGM) quasi-particle branch almost diminishes in BEC regime.
											Related Topics
												
													Physical Sciences and Engineering
													Physics and Astronomy
													Condensed Matter Physics
												
											Authors
												Masahiko Machida, Tomio Koyama, Yoji Ohashi, 
											