Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1822075 | Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment | 2016 | 11 Pages |
Abstract
A highly soluble and polymerizable derivative of 9,10-diphenylanthracene was designed and synthesized specifically to be capable of achieving very high loadings (at least 50 wt.%) when copolymerized with a polyvinyltoluene (PVT) matrix. The resulting heavily crosslinked plastics are mechanically hard and robust, and were found to have exceptional clarity with no sign of dye precipitation. Samples of these plastics both with and without added wavelength shifter were characterized for light yield, scintillation decay, and pulse shape discrimination (PSD) performance for α/γ discrimination, and the results were compared to that of a commercially available PSD plastic, EJ-299-34. The best performing formulation, with a primary dye loading of 50 wt.%, had a measured light yield of 9950 photons/MeV, and achieved a PSD figure-of-merit (FOM) of 1.05, the latter indicating that while the present material is not suited for practical applications, the overall approach demonstrates a proof-of-concept of PSD in highly loaded plastics stabilized through copolymerization of the primary dye, and suggests that further improvements through better dye choice/design may yet be achievable.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Instrumentation
Authors
Tibor Jacob Hajagos, David Kishpaugh, Qibing Pei,