Article ID Journal Published Year Pages File Type
1822352 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2015 6 Pages PDF
Abstract

A model of dark current generation in the photocathode radio-frequency (RF) gun is established in the Thomson scattering X-ray source, and dark current transport and losses along the beamline are simulated. A velocity bunching cavity is added between the RF gun and the first linac to achieve the longitudinal compression of the photoelectron bunches. Given the longitudinal acceleration and the transverse focusing of the bunching cavity, the dark current electrons with bunching are approximately three times more than those without bunching, and this condition aggravates the harm to the operation of the photoinjector. Numerous dark current electrons around the electron–laser interaction section hit against the pipe inner wall and two laser focusing mirrors, producing a large number of background photons. A simulation of the bremsstrahlung process using an MCNP code is presented, showing that the background photon yield is less than 2.1% of the scattering photon yield, which is acceptable for our application.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , ,