Article ID Journal Published Year Pages File Type
1822755 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2013 5 Pages PDF
Abstract

Conventional semiconductor X-ray detectors for medical imaging have either a planar or a pixelated structure. The options available for detection materials are limited by the natural trade-off between the absorption of incident photons and the collection of free charge carriers with these two structures. This trade-off can be avoided by using az 3D structure, in which electrodes are drilled into the detector's volume. This article describes a prototype 3D semiconductor detector, using semi-insulating GaAs. A laser drilling technique was used to create electrodes in the volume of the material. The holes created were characterized by scanning electron microscopy. Electrode contacts were created using electroless Au deposition. The manufacturing process and the first gamma counting results obtained with 241Am and 57Co sources are presented. The system is capable of individual photon-counting without energy discrimination but requires further development to improve efficiency.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , ,