Article ID Journal Published Year Pages File Type
1823057 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2013 12 Pages PDF
Abstract

Future large water Cherenkov and scintillator detectors have been proposed for measurements of long baseline neutrino oscillations, proton decay, supernova and solar neutrinos. To ensure cost-effectiveness and optimize scientific reach, one of the critical requirements for such detectors are large-area, high performance photomultiplier tubes (PMTs). One candidate for such a device is the Hamamatsu R11780, a 12 in. PMT that is available in both standard and high quantum efficiency versions. Measurements of the single photoelectron response characteristics, relative efficiencies of the standard and high quantum efficiency versions, a preliminary measurement of the absolute quantum efficiency of the standard quantum efficiency version, and a two-dimensional scan of the relative efficiency across the photocathode surface are presented in this paper. All single photoelectron investigations were made using a Cherenkov light source at room temperature at a gain of 1×107. These results show that the R11780 PMT is an excellent candidate for such large optical detectors.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , , , , , , , , , , , ,