Article ID Journal Published Year Pages File Type
1824239 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2011 6 Pages PDF
Abstract
Various Monte Carlo programs, developed either by small groups or widely available, have been used simulate decays of radioactive chains, from the original parent nucleus to the final stable isotopes. These chains include uranium, thorium, radon, and others, and generally have long-lived parent nuclei. Generating decays within these chains requires a certain amount of computing overhead related to simulating unnecessary decays, time-ordering the final results in post-processing, or both. We present a combination analytic/stochastic algorithm for creating a time-ordered set of decays with position and time correlations, and starting with an arbitrary source age. Thus the simulation costs are greatly reduced, while at the same time avoiding chronological post-processing. We discuss optimization methods within the approach to minimize calculation time, and extension of the algorithm to include various source types.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, ,