Article ID Journal Published Year Pages File Type
1826606 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2010 9 Pages PDF
Abstract
Precise calibration of monitors and dosimeters for use with high energy neutrons necessitates reliable and accurate neutron fluences being evaluated with use of a reference point. A highly efficient Proton Recoil counter Telescope (PRT) to make absolute measurements with use of a reference point was developed to evaluate neutron fluences in quasi-monoenergetic neutron fields. The relatively large design of the PRT componentry and relatively thick, approximately 2 mm, polyethylene converter contributed to high detection efficiency at the reference point over a large irradiation area at a long distance from the target. The polyethylene converter thickness was adjusted to maintain the same carbon density per unit area as the graphite converter for easy background subtraction. The high detection efficiency and thickness adjustment resulted in efficient absolute measurements being made of the neutron fluences of sufficient statistical precision over a short period of time. The neutron detection efficiencies of the PRT were evaluated using MCNPX code at 2.61×10−6, 2.16×10−6 and 1.14×10−6 for the respective neutron peak energies of 45, 60 and 75 MeV. The neutron fluences were determined to have been evaluated at an uncertainty of within 6.5% using analysis of measured data and the detection efficiencies. The PRT was also designed so as to be capable of simultaneously obtaining TOF data. The TOF data also increased the reliability of neutron fluence measurements and provided useful information for use in interpreting the source of proton events.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , ,