Article ID Journal Published Year Pages File Type
1827348 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2009 17 Pages PDF
Abstract

This work focuses on the investigation of radiation-induced defects responsible for the degradation of silicon detector performance. Comparative studies of the defects induced by irradiation with 60Co-γ rays, 6 and 15 MeV electrons, 23 GeV protons and reactor neutrons revealed the existence of point defects and cluster-related centers having a strong impact on damage properties of Si diodes. The detailed relation between the “microscopic” reasons as based on defect analysis and their “macroscopic” consequences for detector performance is presented. In particular, it is shown that the changes in the Si device properties (depletion voltage and leakage current) after exposure to high levels of 60Co-γ doses can be completely understood by the microscopically investigated formation of two point defects, a deep acceptor and a shallow donor, both depending strongly on the oxygen concentration in the silicon bulk. Specific for hadron irradiation are the annealing effects which decrease (increase) the originally observed damage effects as seen by the changes of the depletion voltage and these effects are known as “beneficial” and “reverse” annealing, respectively. A group of three cluster-related defects, revealed as deep hole traps, proved to be responsible specifically for the reverse annealing. Their formation is not affected by the oxygen content or silicon growth procedure suggesting that they are complexes of multi-vacancies located inside extended disordered regions.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , ,