Article ID Journal Published Year Pages File Type
1830118 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2007 7 Pages PDF
Abstract

An evaluation of solid-state photomultiplier (SSPM) has been conducted for Positron Emission Tomography (PET) applications. The single-channel PET detector has been measured for its performance with respect to linearity of light detection, energy resolution, coincidence timing resolution, and depth-of-interaction detection capability. The SSPMs used have a 1×1 mm2 active detection area. At nominal bias, it has a peak sensitivity around 470 nm, typical single photon detection efficiency around 20%, gain about 600,000, dark current 25 μA, and excess noise factor <1.3. A trans-impedance preamplifier was used to read the signal under operating conditions consisted with a balanced energy and timing performance for the PET application. In this initial study, there was a geometry mismatch between the SSPM and LSO crystal with a 2×2 mm2 cross-sectional area, where the light loss could reach 75%. Measured energy and coincidence timing resolutions are 23% and 1.8 ns, respectively, all within the SSPM linear region of photon detection up to ∼250 photoelectrons. The depth-of-interaction (DOI) resolution was measured with two SSPMs detecting lights at both ends of a 1.8×2×20 mm3 LSO crystal, using a conventional electronic collimation method to localize the DOI positions. The measured DOI resolution was 4.5 (+/−0.3) mm, sufficient to develop a PET detector for the measurement of 3D interaction locations. These preliminary measurements have demonstrated the feasibility of using SSPMs for PET applications.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , ,