Article ID Journal Published Year Pages File Type
1830694 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2007 5 Pages PDF
Abstract
In conventional neutron depth profiling (NDP), residual energies of particles are measured directly by using a semiconductor detector. The measured depth resolution is a function of the material composition as well as a function of the energy resolution of the detector and precision of the measurement electronics. The uncertainty from the substrate is inevitable. However, for relatively thin layers, the predominant uncertainty factor in depth resolution is the metallic layer in front of the semiconductor-charged particle detector. The effect of the layer introduces additional straggling to the particle. Time-of-flight neutron depth profiling (TOF-NDP) is presented to eliminate the need to use semiconductor detectors. Particle energy can be determined from the particle arrival time. Energy resolution improvement achieved with TOF-NDP makes it possible to obtain concentration vs. depth profile of boron in ultra-shallow junction devices.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, ,