Article ID Journal Published Year Pages File Type
183110 Electrochimica Acta 2016 7 Pages PDF
Abstract

Shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond (BN-C/ND) non-noble metal catalyst has been synthesized by a simple one-step heat-treatment of the mixture with nanodiamond, melamine, boric acid and FeCl3. In the process of the surface graphitization of nanodiamond with catalysis by FeCl3, B and N atoms from the decomposition of boric acid and melamine were directly introduced into the graphite lattice to form B, N co-doped graphitic carbon shell, while the core still retained the diamond structure. Electrochemical measurements of the BN-C/ND catalyst show much higher electrocatalytic activities towards oxygen reduction reaction (ORR) in alkaline medium than its analogues doped with B or N alone (B-C/ND or N-C/ND). The high catalytic activity of BN-C/ND is attributed to the synergetic effect caused by co-doping of C/ND with B and N. Meanwhile, the BN-C/ND exhibits an excellent electrochemical stability due to the special shell/core structure. There is almost no alteration occurred in the cyclic voltammetry measurements for BN-C/ND before and after 5000 cycles. All experimental results prove that the BN-C/ND may be exploited as a potentially efficient and inexpensive non-noble metal cathode catalyst for ORR to substitute Pt-based catalysts in fuel cells.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,