Article ID Journal Published Year Pages File Type
183184 Electrochimica Acta 2016 8 Pages PDF
Abstract

•I-V characteristics of a series of oligo(phenylene ethynylene)s molecular junctions were measured.•Conductance values were found to be dependent on molecular length and substituent group.•The measured low conductance values were explained by theoretical calculations.•EC-MCBJ is feasible to fabricate and characterize molecular junctions.

We demonstrate an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach for current-voltage characteristic (I-V curve) measurements of metal/molecule/metal junctions. A series of oligo(phenylene ethynylene)s compounds (OPEs), including those involving electron withdrawing substituent group and different backbone lengths, had been successfully designed, synthesized, and placed onto the fabricated nanogap to form molecular junctions. The observed evolution in the measured conductances of OPEs indicates that there is a dependence of conductance on molecular length and substituent group. Compared with those extracted from conductance histogram construction, the conductances of OPEs measured from I-V curves are considerably lower. Based on the transmission spectra of OPEs that calculated by density functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) method, this difference was attributed to our distinct experimental operation, which may give rise to a stacking configuration of two OPE molecules.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , , , ,