Article ID Journal Published Year Pages File Type
183185 Electrochimica Acta 2016 7 Pages PDF
Abstract

•Gold nanoparticles incorporated zinc based metal-organic framework is synthesized.•It electro-catalyzes nitrite oxidation and nitrobenzene reduction.•Nitrite and nitrobenzene is determined with high sensitivity.•Hydrodynamic voltammetry studies of nitrite oxidation and nitrobenzene reduction are reported.

An electrochemical sensing platform which comprises gold nanoparticles (Au NPs) incorporated zinc based metal-organic framework (MOF-5) is developed for the sensitive determination of nitrite and nitrobenzene. MOF-5 and Au NPs incorporated MOF-5 (Au-MOF-5) are synthesized and characterized by UV-vis absorption, powder X-ray diffraction, FT-IR, scanning electron microscopy with energy dispersive X-ray analysis and elemental mapping, transmission electron microscopy and atomic force microscopy. Oxidation of nitrite is effectively electrocatalyzed at Au-MOF-5 with significant increase in oxidation current (41 and 38% in comparison with bare glassy carbon (GC) and MOF-5 coated GC (GC/MOF-5) electrodes, respectively) and with considerable decrease in the oxidation potential (0. 17 and 0.25 V in comparison with bare GC and GC/MOF-5 electrodes, respectively). The electrocatalytic reduction of nitrobenzene at GC/Au-MOF-5 is confirmed by an appreciable increase in the reduction current (79 and 36% in comparison with bare GC and GC/MOF-5 electrodes, respectively) and a small shift in the reduction potential (20 mV in comparison with GC/MOF-5). The detection limit is calculated as 1.0 μM with a sensitivity of 0.23 μAμM−1 cm−2 for nitrite and 15.3 μM with a sensitivity of 0.43 μAμM−1cm−2 for nitrobenzene determinations. The Au-MOF-5 based electrochemical sensing platform shows high stability and selectivity even in the presence of several interferences (including phenols, inorganic ions and biologically important molecules) with a broad calibration range. Certain kinetic parameters of nitrite oxidation and nitrobenzene reduction have also been studied by hydrodynamic voltammetry.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,