Article ID Journal Published Year Pages File Type
1832352 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2006 5 Pages PDF
Abstract

An efficient iterative image reconstruction methodology is presented, adapted to high-resolution flat-head 3D positron emission tomography cameras. It is based on the ordered subsets expectation maximization algorithm and applies to systems with axial symmetry. The associated system matrix is calculated off-line, including a model of the γ-event detection in the crystal, taking into account photoelectric effect and Compton scattering interactions. The nonzero elements of the sparse system matrix are stored in disc in an efficient way that allows the fast sequential access to the matrix elements during the reconstruction. A detailed calculation is performed for the voxels corresponding to central plane within the field of view (FOV) of the camera and the remaining values of the system matrix are obtained via translations based on the symmetries of the system along the axial dimension. GATE-based simulations have been used for the validation of the results.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , , , ,