Article ID Journal Published Year Pages File Type
183643 Electrochimica Acta 2015 10 Pages PDF
Abstract

We report the first study of the characterisation of the organic ionic plastic crystal (OIPC) N-ethyl-N-methylpyrrolidinium tetrafluoroborate (C2mpyrBF4) upon mixing with a dendrimer additive. Whereas previous reports of OIPC composite formation (i.e. with ceramics and polymers) have typically reported a decrease in the conductivity when lithium salt had been added, the addition of dendrimer is shown to lead to a substantial enhancement in the lithium containing system, approaching 3 orders of magnitude at 30 °C. Mechanical analysis indicates that dendrimer addition leads to a softer more ductile material while microscopy shows that the dendrimer is uniformly distributed and that the crystal microstructure is substantially disrupted, ultimately adopting a dendritic microstructure at 1 mol% dendrimer content. Thermal analysis indicates a new phase in the lithium OIPC system, the crystallisation of which is suppressed in the presence of dendrimer. Instead, a decrease in the phase transition enthalpies indicates a large increase in the amorphous component of the Lithium OIPC, particularly for the most conductive system -C2mpyrBF4 + 10 mol% LiBF4 + 0.1 mol% dendrimer. Variable temperature powder X-ray diffraction confirms the presence of a new distinct phase and its absence in the presence of dendrimer. A change in the progression of the thermal phase behaviour of the OIPC in the presence of dendrimer is also shown, exhibiting the phase I (high temperature) structure at temperatures below the phase II-I transition.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,