Article ID Journal Published Year Pages File Type
183863 Electrochimica Acta 2015 7 Pages PDF
Abstract

By combining alloying and supporting approaches, ternary alloy CuFePt nanocatalysts anchored on the reduced graphene oxide (RGO) have been facilely synthesized by using NaBH4 as reductant in an ambient one-pot strategy. The as-prepared CuFePt/RGO hybrids were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive spectrometry (EDS), and transmission electron microscopy (TEM). The electrochemical measurements showed that the ternary CuFePt/RGO exhibited a highly enhanced electrocatalytic activity and improved stability for the methanol oxidation reaction (MOR) and formic acid oxidation reaction (FAOR), much superior to those of binary CuPt/RGO and FePt/RGO, and mono-metallic Pt/RGO counterparts. The atomic composition ratios of Cu and Fe in CuFePt/RGO were also optimized to probe their influences on electrocatalytic performance. The straightforward synthesis of ternary CuFePt/RGO provides a promising strategy for development of high-performance Pt alloy catalysts for both MOR and FAOR in fuel cells.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,