Article ID Journal Published Year Pages File Type
1840666 Nuclear Physics B 2014 23 Pages PDF
Abstract

Oscillations of photons into axion-like particles in a high-intensity laser field are investigated. Nonlinear QED effects are considered through the low energy behavior of the vacuum polarization tensor, which is derived from the Euler–Heisenberg Lagrangian in the one-loop and weak field approximations. The expressions obtained in this framework are applied to the configuration in which the strong background field is a circularly polarized monochromatic plane wave. The outcomes of this analysis reveal that, in the regime of low energy–momentum transfer, the axion field induces a chiral-like birefringence and dichroism in the vacuum which is not manifest in a pure QED context. The corresponding ellipticity and angular rotation of the polarization plane are also determined. We take advantage of such observables to impose exclusion limits on the axion parameters. Our predictions cover axion masses for which a setup based on dipole magnets provides less stringent constraints. Possible experimental scenarios in which our results could be tested are also discussed.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,