Article ID Journal Published Year Pages File Type
1841299 Nuclear Physics B 2011 51 Pages PDF
Abstract
We demonstrate that topological defects in a rational conformal field theory can be described by a classifying algebra for defects - a finite-dimensional semisimple unital commutative associative algebra whose irreducible representations give the defect transmission coefficients. We show in particular that the structure constants of the classifying algebra are traces of operators on spaces of conformal blocks and that the defect transmission coefficients determine the defect partition functions.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,