Article ID Journal Published Year Pages File Type
1841345 Nuclear Physics B 2010 42 Pages PDF
Abstract

The differential-reduction algorithm, which allows one to express generalized hypergeometric functions with parameters of arbitrary values in terms of the same functions with parameters whose values differ from the original ones by integers, is discussed in the context of evaluating Feynman diagrams. Where this is possible, we compare our results with those obtained using standard techniques. It is shown that the criterion of reducibility of multiloop Feynman integrals can be reformulated in terms of the criterion of reducibility of hypergeometric functions. The relation between the numbers of master integrals obtained by differential reduction and integration by parts is discussed.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,